Comparison of nanodosimetric parameters of track structure calculated by the Monte Carlo codes Geant4-DNA and PTra.

نویسندگان

  • P Lazarakis
  • M U Bug
  • E Gargioni
  • S Guatelli
  • H Rabus
  • A B Rosenfeld
چکیده

The concept of nanodosimetry is based on the assumption that initial damage to cells is related to the number of ionizations (the ionization cluster size) directly produced by single particles within, or in the close vicinity of, short segments of DNA. The ionization cluster-size distribution and other nanodosimetric quantities, however, are not directly measurable in biological targets and our current knowledge is mostly based on numerical simulations of particle tracks in water, calculating track structure parameters for nanometric target volumes. The assessment of nanodosimetric quantities derived from particle-track calculations using different Monte Carlo codes plays, therefore, an important role for a more accurate evaluation of the initial damage to cells and, as a consequence, of the biological effectiveness of ionizing radiation. The aim of this work is to assess the differences in the calculated nanodosimetric quantities obtained with Geant4-DNA as compared to those of the ad hoc particle-track Monte Carlo code 'PTra' developed at Physikalisch-Technische Bundesanstalt (PTB), Germany. The comparison of the two codes was made for incident electrons of energy in the range between 50 eV and 10 keV, for protons of energy between 300 keV and 10 MeV, and for alpha particles of energy between 1 and 10 MeV as these were the energy ranges available in both codes at the time this investigation was carried out. Good agreement was found for nanodosimetric characteristics of track structure calculated in the high-energy range of each particle type. For lower energies, significant differences were observed, most notably in the estimates of the biological effectiveness. The largest relative differences obtained were over 50%; however, generally the order of magnitude was between 10% and 20%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of cellular S-value of auger electrons emitting 111In radionuclide by Geant4 and its comparison with MCNP5 Monte Carlo codes and MIRD published data

Introduction: Now day Ionizing radiation has found increasing applications in cancer treatment. However, in the treatment different kinds and size of tumors especially metastatic and small size tumors, conventional methods of external radiation therapy are not common. In radionuclide therapy, the use of monoclonal antibodies has made it possible to achieve maximum dose to small size tumor and m...

متن کامل

Cellular S-value of beta emitter radionuclide’s determined using Geant4 Monte Carlo toolbox, comparison to MIRD S-values

Introduction: Spatial dose distribution around the radionuclides sources is required for optimized treatment planning in radioimmunotherapy. At present, the main source of data for cellular dosimetry is the s-values provided by MIRD. However, the MIRD s-values have been calculated based on analytical formula in which no electrons straggling is taken to account. In this study, we used Geant4-DNA...

متن کامل

CALCULATION OF CROSS SECTION AND PRODUCTION YIELD OF RADIOPHARMACEUTICAL PRASEODYMIUM-139 THROUGH 140CE(P, 2N)139PR REACTION USING GEANT4 AND TALYS NUCLEAR CODES

Background & Aim: PET is a very useful and suitable imaging method in nuclear medicine. This method uses positrons with a special energy for imaging. The elements of the lanthanide are suitable for the decay of positrons with a specific energy for use in PET. Praseodymium-139 with a half-life of 4.5 hours is one of the useful elements in the group of lanthanides that can be used in PET. In this...

متن کامل

Effect of a static magnetic field on nanodosimetric quantities in a DNA volume.

PURPOSE With the advent of magnetic resonance imaging (MRI)-guided radiation therapy it is becoming increasingly important to consider the potential influence of a magnetic field on ionising radiation. This paper aims to study the effect of a magnetic field on the track structure of radiation to determine if the biological effectiveness may be altered. METHODS Using the Geant4-DNA (GEometry A...

متن کامل

Comparison of ScintSim1 and Geant4 Monte Carlo simulation codes for optical photon transport in thick segmented scintillator arrays

  Introduction: Arrays of segmented scintillation crystals are useful in megavoltage x-ray imaging detectors for image-guided radiotherapy. Most previous theoretical studies on these detectors have modelled only ionizing-radiation transport. Scintillation light also affects detector performance. ScintSim1, our previously reported optical Monte Carlo code for such detector...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 57 5  شماره 

صفحات  -

تاریخ انتشار 2012